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THE GENESIS OF DYNAMIC SYSTEMS GOVERNED BY METZLER MATRICES

Kenneth J. Arrow
0. Introduction.

The literature on dynamic systems in economics is vast, and an important part
of that deals with systems of differential or of difference equations where the
Jacobian of the right-hand side is a Metzler matrix, i.e., a matrix whose off-
diagonal elements are non-negative. Such matrices have a wide range of
applicability in dynamic economic models, in input-output analysis, in stability
analysis of systems of excess demands governing price changes, and in multi-sector
and multi-national Keyrasian income determination models. Oskar Morgenstern early
perceived the importance of such models and encouraged research in them, as seen
in the papers by Y.K. Wong and M.A. Woodbury in Morgenstern (3). For a later
survey, see (2).

The bulk of this work, as indeed the bulk of the work on dynamic systems in
general, concerns what might, in theological terms, be called the eschatology of
the system, the questions of the end or final state of the system. In this paper,
I want to concentrate on the behavior of the system in its initial phases, its
genesis. The problems revolve mainly about the presence of off-diagonal zeroes
in the matrix governing the system and of zeroes in some components of the initial
conditions and of the forcing terms. If the matrix were strictly positive, for
example, then any initial impulse anywhere immediately (or with a lag of one time
period in a difference equation system) produces a positive response everywhere.
But if there are some zeroes in the matrix, then the transmission of the impulses
is delayed. In the case of differential equation systems, the effect appears as
a Tower rate of growth of the component; instead of increasing linearly, it may
increase quadratically or even with a higher power from its initial value of zero.

The discussion of this subject involves what appears to be a new concept, that
of first-positivity. A sequence is first-positive if the first non-zero element
is positive. Similar definitions can be given for sequences of vectors and matrices
The methods bring together a number of elementary concepts from diverse fields,
including matrix algebra, the theory of reiations, and the theory of differential
equations.

In section 1, the concept of first-positivity is introduced, and some
elementary properties developed. In section 2, there is a digression on some
properties of relations which will be useful in the sequel. Section 3 studfes -
first-nonzero and comctlﬂty propurti« of the sequence formed by the powers of
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a matrix; at this stage, there is no restriction to Metzler matrices. Section 4
discusses a property of matrix exponentials, which are used in expressing the
solution to a system of differential equations. In section 5, we draw the
previous results together in application to the first-positivity and connectivity
properties of the sequence of powers of a Metzler matrix.

The results to which the earlier sections were leading are contained in
section 6 and section 7. These characterize the geneses of systems of difference
equations and of differential equations, respectively. In the first, the time of
first-positivity of a specific component is expressed in terms of the connectivity
properties of the matrix, the specification of the positive components of the
starting values, and the first-positivity properties of the forcing function.

In the second, the order of increase of a specific component is expressed in terms
of the same factors.

1. First-positivity.

In the following, we use "D" as an abbreviation for "Definition." In general,
small letters, such as "x," stand for sequences (functions on.the non-negative
inteners) of scalars or vectors; a capital letter, such as "A," stands for a
sequence of matric®€s; “:{n)" or "A(n)" will be the value of x or A, respectively,
at integer n; "xa" or "Aas" will be the 3taiar saquence fonngd by considering only
the component o of the vector or the element (x,B8) of the matrix Seyuei-2.

D.1. For a scalar sequence x, define x) =min {n| x(n) # 3}. We refer
tov(x) as the non-zero index of x.

Note that the non-zero index is not necessarily defined, since x might be
identically zero. This problem of lack of definition occurs persistently but can
de dealt with, as will be noted later. %

D. 2. xV & x[u(x)]

Thus x is the value of the fire{ ziement in the sequence x which is not zero. The
symb\ ], “A." is read, "eo;ts by definition."

L3, (x is #ist-positive) &(x">0).

No. Tet .. bz a sequence of vectors. Each of the above definitions is still
allowed t.- !w0ld, but must be applied to each component. That is, for each
component a of the vector, x 1is a scalar sequence. Then “‘5m) is defined by D. 1,
and similarly, (xc)" by D. 2. It will be useful to interpret x to be a function
from a finite domain (the domain of its components) to the space of scalar
sequences. Let F be this domain. Then v(x) will be interpreted as a function,
the value for a being v(xa). lt. must be emphasized, however, that x) might not
be defined for all elements of F, for it can happen that the sequence X, is
fdentically zero for some o and therefore v(x) (a) = v(&) is not defined for
that value of a

D. 4. If x is a sequence of vectors, the function v(x) is defined by the




relation, v(x)(a) = v(x ).

D. 5. xV(a) = xglv(x))] = xav ’
so that the function xV has the same domain of definition as wv(x).

The analogue of D.3 for vectors is a vector inequality, i.e., we regard a -
sequence of vectors as first-positive if each component is. However, we have to
account for the possibility that the domain of definition of x might not be the
entire possible domain F. We need a convention for the meaning of an expression
like f(a) > 0, or, more generally, for an expression, f(a) >9d(a), where one or
both of the functions f and g may be undefined at a particular point 4. We shall
regard the inequality as holding if f is undefined at yand g is defined there or

if both are defined and f(a) is indeed bigger than g(a), and not otherwise.
Convention 1. If the functions f and g are both defined at a, then the

expression, f(a) > g(a), has its usual meaning; otherwise, it holds if and only
if f is not defined at o and g is. :

A similar convention will hold for equality.

Convention 2. If the functions f and g are both define at a , then the
expression, f(a) = g(a), has fts usual meaning; otherwise, it holds if and only
if neither f nor g are defined at a.

If we use the usual symbol,

0.6. dom f = {a | f(a) is defined} ,
then Convention 1 says that f(a) > g(a) if a € dom g andagdom f, while
Convention 2 implies that f(a) = g(a) if a ¢ dom f, o ¢ dom g.

Inequality among functions has the usual meaning that the inequality holds for
all values of the argument, with, however, the conventions above observed. From
the above remarks, it is easy to note that,

f<g implies dom f C dom g.

With these conventions, the definition of first-positivity, D. 3, remains
valid for sequences of vectors. It means that each component is first-positive if
not identically zero.

The following simple lemma holds for adding first-positive sequences, whether
of vectors or of scalars.

Lemna 1. 1f x! is first-positive for each 1, then £ x' is first-positive,
and v(f x') = u:n v(x'). !

Proof: Let v=mn vix'), P= (1] wix') =T ) Ifn< 7, then n<v (x)

for all 1, so that x'(n) = 0 for a1 1, by 0.1, and therefore § x1(n) = 0.
On the other hand, x'(3) = x'V > 0 for 1 € P, by 0.2 and then 0.3, wix') > for

" 1¢ P, and therefore x'(T) = 0 for 4 ¢ P. Hence, I x'(V) > 0, so that the Lemma
holds. ' i

Although the proof has been stated for scalars, it holds, with suitable
interpretation for vectors; the operator, "u‘n.' in the statement of the Lemma
must be taken to hold component-wise.




Also, it is useful to note how the Conventions are used. The proof as given
seems to require that v(x’) is defined for all i. [If, however, it is defined
only for some i, then vV is taken as the minimum over all i for which it is _
defined. That indeed is the interpretation implied by Conventions 1 and 2. Then
the argument is valid in every detail; in particular, if v(x’) is not defined for
some i, then certainly, by Convention 1, v(x’) > V. On the other hand, in just
that case, x'(n) = 0 for all n, and therefore certainly, x'(V) = 0. In the future,
all proofs will be carried on as though all functions were defined; the correction
for the cases of lack of definition can easily be supplied by the reader.

The same definitions will be needed for sequences of matrices; however, since
a matrix can be thought of as a vector, there is no need for additional definitions.
(Square) matrices can be thought of as functions on a domain of the form, F x F,
there F is finite, and "x" denotes Cartesian product. In this case, if A is a
sequence of matrices, v(A) is a function of two variables, representing the rows
and the columns.

A useful concept in expressing the solution of systems of difference equations
is the convolution of two sequences, a term borrowed from probability theory. It
is the same as the expression for the distribution of the sum of two independent
non-negative random variables.

D. 7. If x and y are two sequences, then the sequence x*y is defined by,

(x*y) (n) = g x(3) y(n-3).
J=0

First, suppose x and y are scalar sequences. From D.1, x(j) = 0 if j < vw(x),

and y(n-j) = 0 1f n-j < v(y), or, equivalently, j > n-v(y). Hence,

x(§) y(n-3) = 0 unless v(x) & § & n- u(y).
If n < v(x) + v(y), then v(x) > n - v(y), so that x(j) y(n-j) = 0 for all j, and
therefore (x*y) (n) = 0. If n= v(x) + v(y), then x(j) y(n-j) = 0 except for
J = v(x) = n - v(y), so that (x*y) (n) = x[v(x)] y(v(y)1 = x“y" # 0, by D.2 and
D.1. Hence, for scalar sequences, (x*y) (n) = 0 for n < v(x) + v(y), # 0 for
n= v(x)+ v(y), so that, by 0.1, v(x*y) = v(x) + v(y), and, by 0.2, (x*y)’ =
x"y’. If it s also assumed that x and y are first-positive, then, by D.3,
xV >0, y¥ > 0, and therefore (x*y)” > 0, so that x*y is first-positive.

Lemma 2. If x and y are scalar sequences, then v(x*y) = v(x) + v(y), and
(x*y)¥ = xV y¥ . 1If n addition x and y are first-positive, then so is x*y.

The definition of a convolution can be applied, not only to scalars but also
to vectors and pairs consisting of matrices and vectors, with the proper interpre-
tatfon of multiplication in the definftion. Let x and y be vector sequences, each
vector being of the same number of components, and let multiplication be interpreted
as the taking of an inner product, 4
%(3) yin-3) = T %y(3) ygln-9),
so that, ’




n
(x*y) (n) .Jgo g xg(J) ys(n-J) -gjfo xg(d) ygln-3) = g (xg*yg) (n).

Suppose in addition that x and y are first-positive. Then, for each 8, Xg and Yg
are first-positive, and therefore xB*yB is first-positive, by Lemma 2, and x*y is
first-positive by Lemma 1. From Lemmas 1 and 2,

v(x*y) = n;n v(xg*yg ) = m;n (v(x) (B) + v(y) (8)] . (2)

We will apply this result to multiplication of a matrix sequence A by a
sequence of conforming column vectors, x, where both A and x are first-positive.
Equation (2) can be applied, with each row of A, in turn, replacing x, and x
replacing y. The sequence A*x is a sequence of column vectors.

Lemma 3. Let A be a first-positive sequence of matrices, and x a first-
positive sequence of column vectors conforming with A. Then v(A*x) (a) = min
(v(A)(a,B) + v(y) (B)] and A*x is first-positive. 8
2. Relations, their Powers, and Chains.

A relation is simply a set of ordered pairs. In the main application in this
paper, the relation, C(A), is defined by the condition that a C(A) B 1is and only if
Aas # 0, for a given matrix A; thus, C(A) is the set of all ordered pairs for
which this condition holds. Typically, then, a relation, R, is some subset of
F x F. In this section, however, the relation R is arbitrary.

A partieuhrlyAinteresting relation is the identity relation, E.

0.8. (aEB)=(a =8)

Following Quine (4), p. 213, the relative product of two relations, R & S,

is defined by, ;

D.9. (a RIS B) = (for some y, a Ry and v S B).

Like any other form of multiplication, tre relative product can be used to define
the powers of ‘a relation inductively.

0.10. 8% =g, R™! = g"|p.

This definition can be given a useful alternative form by introducing the
concept of an R-chain. A

D.11. (o is an R-chain of length n froma to 8 ) = (o is a function defined
on the integers 0,...,n, o(0) = a, o(n) = 8, and o(1-1) R a(1) for i = 1,...,n)
In short, an R-chain is an ordered sequence of n+1 elements, such that the relation
R holds between every successive pair.

It 1s intuitively obvious and can easily be proved by induction that the
relation R" holds if and only 1f there is an R-chain of length n connecting the two
elements.

Lesma 4. a R" 8 1f and only if there exists an R-chain of length n from o to

8.

For a given a and 8, there may be R-chains of different lengths from one to
the other (of m. it u cm msmc that tm are no R-chains of any length
from o to l). !
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D. 12. (o is a shortest R-chain from o to B) 4 (for some n and all m n,
¢ is an R-chain of length n from a to B and there is no R-chain of length m frum
a to B). :

Shortest chains have a property which will be useful later.

Lemma 5. A shortest R-chain is a one-one function.

Proof: We seek to prove that if o is a shortest R-chain from o to B and if
o(i ) = 0(12). then i, = i,. Let i = min (i], iz). h = max (i]. 12) - i.
Clearly. h30 by definition; we seek to prove that h = 0, or, equivalently, that
h CO0. To this end, we construct an R-chain of length n-h from a to R, where o
is an R-chain of length n; since o is a shortest R-chain, it follows by definition
that n-h 2 n, or h So. By assumption,

o(i) = a(i + h). (3)
Define a function, o' on the integers 0,...,n-h, as follows:

o'(1) = o(i), 0 i<i, (4a)

= g(i+h), i =i 5 p-h. (4b)

If 1 = 0, then from (4b) and (3), o'(0) = o(h) = o(0). If i > 0, then o'(0) = o(0)
from (4a), so that o'(0) = o(0) in either case. Also, from (4b), o'(n-h) = ¢ (n).
Since o is an R-chain of length n from a to 8, o(0) = a and o(n) = B; hence, we
have shown that o'(0) = o and o' (n-h) = 8.

To show that o' is an R-chain of length n-h from a to 8, it remains, by D.11,
to show that ¢*(1-1) R o (1). S43nh. Ifi<i, this follows immediately from
(4a). 1f i > i, then i-1 -1. by (4b), o'(i-1) = o(i+h-1), o' (i) = o(i+h), and,
since o is an R-chain, o(i+h-1) R o(i+h), and therefore o'(i-1) R o'(i).

Finally, let 1 = i; then 1 > 0. In this case, o'(i-1) = o(i-1), while
o'(i) = a(i+h) = o(f + h) = o(i) = o(i), by (4a), (4b), and (3). Since o is an
R-chain, o(i-1) R o(i); hence, o'(i-1) R o'(i). Therefare all the conditions of
0.11 are satisfied for o', so there is an R-chain of length n-h froma to 8, and
therefore h £ 0, verifying the lemma. |

To any fixed a, there {s associated the set {a |oR 8} ; we introduce the
notation R 8 to stand for this set. More generally, if there is a set of values of
8, say S, then R S, will stand for the union of the sets Rg, for B ¢ §S.

0.13. RS2 (a | for some 8, a R 5 and 8 ¢ SJ.

It is easy to see that,

R(SUT)= RS) v (R T), (5)
where AUB is the union of the sets A and B.

More generally, if S; 1s an index set of sets, with i varying over a set i,

R US,-UIS,. (6,

where s, is ﬂll union of the sets s,.
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any given matrix A. i

D.14. (a C(A) 8 ) = (Aca 70).

The connectivity relation for a power of A will also be of interest.

The sequence of powers of a matrix, A", n 2 0, where A° = I, is a particular
sequence, and a nonzero index function can be associated with that sequence. As a
matter of notation, we must distinguish between a particular element of the
sequence and the name of the sequence. For this purpose, we borrow the functional
abstractor notation from mathematical logic (see, e.g. (4), p. 226). In general,
for any function which takes on the value f(x) at the point x, we will mean by
Ay f(x) the name of the function which takes on these values. In this paper, we
will apply the notation only to sequences, where the variable is n.

D.15. A, f(n) is the function which takes on the value f(n) when the

argument takes on the value n.

Thus, An A" is the sequence of powers of A. Associated with this sequence is
a nonzero 1ndex function, v(A A"), defined over ordered pairs. By D.1, D.4, and
D.14;

v(ay A") (as 8) = min{ n |a C(A")8 }. : (7)
Note that,

C(A®) = c(I) = E, (8)
so that a C(A°)s holds if and only if a = 8; therefore,

v(l A" )(a,8) = 0 if and only if a = 8. (9)

In view of (M, v O A") is defined for a particular pair (a,8) if and only if
aC(A")g for some n. In set-theoretic language, define the relation, K’ (A), by
0.16. K (A) = U c(A"),

where lJ is the union of the relations C(A"); remember that a relatior is a

n=0
particular kind of set. Then,
K (A) = dom v(r, A") = dom (a, A")" . (10)

We will explore that effects on the nonzero index and related concepts for a
sequence of powers of a matrix of altering the matrix by adding a constant to the
diogonal elements. As a preliminary, it is noted that the binomial theorem is
valid for pairs ofnnatriccs which commute with each other.

(A+8)"= A (7) A" 8"°" 1f AB = BA.

Let B be a scalar multiple of the identity matrix, B = sI for some scalar s. Then
s1 comutes with matrix A. Note that (s1)"™" = ¢"" "V & "7 |,

(A+s)" = .z (7 s"" A m)

0.17. (A58 mod 1) & (A-B.= sI for some scalar s)
Note that the relation is symmetric. Suppose it holds for two matrices, A and B.
From (11), n ; YA ‘ -
)y = 2 () 87 (A7) for some scatar s. (12)




Clearly, if (B"&B # 0, then it must be that (A" ),g # O for some r < n. In
particular, let n = v(An 8")(a,8). Then it fol]ows that,

v()«n A" )a,8) = v(A" Bn)(a.B). :
But since the relation, A = B mod I, is symmetric, this must hold with A and B.
interchanged; also, it holds for any a and 8.

v(a, A") = v(a, 8").

If two functions are equal, they have the same domain of definition, by Convention
2; hence, from (10), KY(A) = KY (B). Further, if we set n = P A")(a,8) =

v(3, 8")(a,8), then, by (7), (8") 5 = 0 for r < n; from (12), ‘B"’as (Y

By D 5

(3 AN = (o 8"V,

Thearew 3. 10 A 3 B mod I, then (a) v(r, A") = v(x 8");

(b) (a4, A" = (1, B ; and (c) K" (A) = K¥ (B).

The relation C(A) measured what might be termed the direct connectivity of the
matrix. Two elements may be indirectly connected through a chain of direct
connections. In view of Lemma 4, it is natural to define the connectivity index
of a matrix (a function, not a number) as smallest power of C(A) which holds
between two elements.

D.18. &(A)(a,8) = min { n| af(C(A)1 "

Note that, since (C(A)]° = E, G(A)(a,s) = o if and only if a = 8.

Also, if A, p? 0and af g, then u{C(A)} 8 while not o C(A) %8, so that 5(A) (a,8)
=1, Froa D.la. the domain of definition of the connectivity index is precisely
the set of ordered pairs for which the relation [C(A)] " holds for some n. Define,

0.19. k8 (a) = lJ [c(a)) "

Then,
k% (A) = dom & (A). (13)
It is convenient to introduce the notation,
" Z(A) (as8 , n) is the set of C(A)-chains of length n from a to 8. (14)
Then, from =8
alC(A)1"s 1f and only if z(A) (a, 8, n) is non-empty. (15)

We investigate the effect on the connectivity index of a change in the
diagonal elements of the matrix. (Although for our later purposes, only a constant
change is relevant, the results hold for any change in the diagonal elements.)
Suppose therefore A - B s a diagonal matrix; note again that this relation is
symetric. Let o be a C(A)-chain of length 6 (A)(a,8). By D.18, it is a shortest
C(A)-chain from o {> :, and therefore o is a one-one function by Lemma 5. In
particular, o(1-1) # o(f), 1 5 i & G(A)(a.a) Since A-B is diagonal,

As(1-1),0(1) * Bo(a-1), o(1)" (16)

Since o s a C(A-chain, o(1-1) C(A) o(i) for al1 1, or, by D.14, A1) ol4) 7 O

. By (16), By(1-1),0(1) ? O for a1l 1, so that o 1s a C(B)-chain. In the

e
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notation (14),

z(A) (a, 8, &(A) (a,8) )C z(B) (a, B, & (A) (ayB) ).
If 8(A) is indeed defined at (a,8), then the left-hand set is non-empty and there-
fore so is the right-hand set. By D.18 and (15),

§(B) (a,8) = 6(A) (a,8).
This statement also holds if 6(A) is undefined at (a,8) by Convencions 1 and 2. By
the symmetry, the inequality holds with A and B interchanged, so that s(A) = 5(B).
Since the two functions are equal, they have the same domain of definition. From

(13), then, we have
Theorem 2. If A - B is a diagonal matrix, then &(A) = &(B) and kS () = k8 (B).

4., Matrix Exponentials
As is well known, solutions to systems of linear differential equations with
constant coefficients can be expressed simply in terms of the exponential of the

matrix of coefficients.
0.20. *2 T A'm

The infinite serigzoconverges absolutely for all A, so that eA is defined and the
series can be rearranged at will. If we add the scalar multiple of the identity
matrix to A, the value of the exponential can be expressed.with the aid of (11).

eM'*SI = 7 (A#sl)n/ﬂ! = 3 (i/nt) = (n17i13?) s’ A
n=0 n=0 i+j=n

=5 ¢ (shinmzan =t st (T A
0 f4en §=0 =0
S

=g €
Lemma 6. If A =B mod I, then eB =p eA for some positive scalar p.

Corollary 1. 1f A = B mod I, then ¢® 2 0 if and only if €® % 0.
Corollary 2. If = B mod I, then C(e") = c(eb).
5. First-Positivity and Connectivity of Non-negative and Metzler Matrices.
First, make the obvious observation that if A = 0, then oC(A)g if and only if
Ace > 0. Recall,
(K™) 45 = By (A", A g
1f A 2 0, then A" = 0 for all n. Hence, the right-hand side is a sum of non-
negative terms and is positive if and only if at least one is positive. Therefore,
aC(A™') 8 1f and only 1f, for some &,(A") , A o > 0, or, equivalently, if and
only if, for some v, oC(A")_ and yC(A)s . In the notation of D.9,
CA™) = cA™ [c(a). . (17)
Lewma 7. If A 20, C(A") = (C(A)) "
Proof: For n = 0, we know that C(A%) = E = [C(A)1°. Suppose the Lemma is
true for n.. Then, from (17), :
CcA™) = can” [c) = can™,

b’ o.b lo.
From (7) and the definition of 6(A), 0.18, Lemma 7 immediately implies that

e ———
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v(x A") = 5(A) when A 2 0; the two functions have the same domain of definition,
so that K” (A) = k% (A) by (10) and (13).

Since A" 2 0, it follows immediately from D.5 that (1, A")" Z 0; but by 0.4,
it must be that (A A " (a,8) # 0 for all (a,8) in the domain of definition, so
that (x A )“ > 0, that is, the matrix sequence, An A“, is first- positive

Finally. from the definition of an exponent1a1 D.20, e Az £ 0 when A % 0.
Since the definining series is a sum of non-negative terms,

(") 5 > 0 if and only if (A")_, > 0 for some n,

SO0 that.
ceh) = U ca") = ° (),
n=0
by D.16.

Lemma 8. If A 2 0, then 3, A" is first-positive, v(a, A") = 5(A), ¢* 2 0, and

K” (A) = k® (A) = c(eM).

The main mathematical result of the paper is that this Lemma holds not merely
for non-negative but for all Metzler matrices. We recall the definition.

D.21. A is Metzler if Aas 20 for a# 8.

A simple and useful relation between Metzler and non-negative matrices is the
following:

A is Metzler if and only if there exists B 2 0 such that A=Bmod I. (18)

Theorem 3. If A is Metzler, then An A" is first-positive, v(x A") = 5(A),

20, and K (A) = €8 (a) = C(eh).

Proof. Choose B as in (18). Then, from Theorem 1, Lemma 8, and Theorem 2,

v(xy A")%= v(x, B7)%= 6(B) = 8(A).
From Theorem 1 and Lemma 8,

(4, A = (1, 8" > 0.

From Lemma 8, ¢ 2 0, and therefore from Corollary 1, e® 2 0. Finally, from
Corollary 2, Lemma 8, and Theorem 1, C(e®) = c(e®) = k¥ (B) = K¥ (A), while from
Lemma 8 and Theorem 2, K® (B) = kK® (B) = K¥ (A).

The importance of this theorem is that the qualitative behavior of the powers
and the exponential of a Metzler matrix can be inferred solely from its connectivity
properties. These depend only on the location of the off-diagonal zeroes and are
independent both of the diagonal elements and of the magnitudes of the non-zero
off-diagonal elements. Thus, if we raise a Metzler matrix to successively higher
powers we know that in each place in the matrix, the first non-zero element (if
any) will be positive and the power for which the non-zero entry occurs is equal to
the length of the shortest chain from the row element to the column element through
non-zero entries.

A side consequence of the analysis is a pair of what are apparently new
necessary and sufficient conditions for a matrix to have the Metzler property.

Theorem 4. Each of the following conditions is nocossary and sufficient that
A be a Metzler matrix: (a) Ay A" s first-positive; (b) Mt 2oforants 0.

A




Proof: (a) Necessity has already been shown in Theorem 3. Suppose, then, that
the sequence \n A" s first-positive. The pairs (a,B) can be classified according
as v(a, A") (a.s) is 0, 1, or greater than l In the first case, as remarked in
(9), a = 8. In the second, we must have (A ) f 0, by definition and therefore
A“B > 0, since A\n A" is first-positive. In the third case. (A ) = 0 by
definition of the non-zero index. Hence, ifa# 8, A 20, so that A is a
Metzler matrix.

(b) If A is Metzler and t > 0, a scalar, then At is also Metzler, and eAt
by Theorem 3. Conversely, suppose that eAt 20 for all t > 0. Note that eAt =

when t = 0, that,

At
d(e ) . At
o kL
so that,
At
d(e &
t A,
=0
and that, by definition,

dEeAt) i e

t+0

w
o

“* From the hypothesis and (18), eAt - I is Metzler for t > 0, and therefore

(eAt - I)/t is a Metzler matrix for t > 0. Hence, A is a limit of Metzler matrices;
since the set of Metzler matrices is clearly closed, from the definition, A must be
a Metzler matrix.
6. Genesis of a System of Difference Equations with Metzler Matrix as Jacobian

We consider the system of difference equations,

x(n+1) = Ax(n) + b(n), (19)
where we assume that A is a Metzler matrix, b a first-positive sequence, and
x(0) 2 0. To express the solution compactly, define a vector sequence, c, by,

c(n) = x(0) for n = 0,

= b(n-1) for n > 0. (20)

Then (19) can be written,

x(n+1) = Ax(n) + c(n+1),

x(0) = c(0).
By induction, it is easy to verify that,

x(n) = ¥ A ¢(n-j),

J=0

or, in the notation introduced in D.7,

X = (x“ A)*c. (21)
Since b is first-positive, it is easy to see from (20) that c is first-positive (If
Xg (0) > 0, then < (0) > 0, so that Cq is certainly first-positive; if Xg (0) = 0,
thln the first non-zero element in the sequence Cg is the first non-zero olc-nnt
of h with non-zero index increased by 1, and uust be positive since b is first-
nmm.) If A is Metzler, A A" s first-positive by Theorem 3. Hence, by
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Lewma 3, x is first-positive, and,

v(x)(a) = man [ v, A")(a,8) + v(c)(8)] . (22)

Define, for any vector x,

D.22. P(x) & (a |x_ >0 }.

In (22), for each g, either 8eP([x(0)] or 8 £ P(x(0)] . The minimum can be taken
separately over the two sub-sets and then the minimum of the two taken. Note that
if 8 eP[x(0)], then, from ( 20), v(c)(B) = 0, while if 8 £ P[x(0)], then v(c) (&) =
v(b)(8) + 1. Further, from Theorem 3, v(xn A")(a,8) = 6(A)(a,8). Substitution
into (22) yields,

Theorem 5. If A is a Metzler matrix, b a first-positive sequence of vectors,
x(n#1) = Ax(n) + b(n), and x(0) Z 0, then x is a first-positive sequence, and

v(x)(a)

=min { min 6(A)(a,B), 1+ min (6(A)(a,8) + v(b)(8)]} .
8 P[x(0)] 8 £P(x(0)]

Note that Theorem 5 implies that each component is positive before it can
become negative. Further, a given component can be positive in two different ways.
One is ultimately due to a positive initial component g which is linked to the
given component o directly or indirectly. The other is through the emergence of
a positive element in one component of the forcing term b(n), which is then linked
to the given component, a. The shortest of all these routes determines the length
of time before the positive effect appears.

7. Genesis of a System of Differential Equations with Metzler Matrix as Jacobian

As a preliminary, we note, in the notation introduced in D.13 and D.22,

Lesma 9. If A 20 and x 2 0, then P(Ax) = C(A) P(x).

Proof: (Aa) = GA“ Xg - Since all terms are non-negative by assumption,
(Ax)c > 0 1if and only if, for some g, AoB >0 and Xg > 0; but this holds if and
only if, for some g8, aC(A)8 and g eP(x).

Now consider the system of differential equations,

x=A +b(t), (23)
where A is a Metzler matrix, b(t) 2 0 for all t, and x(0) # 0. This clearly has
the solution,

x(t) = M x(0) + st e“("") b(u) du,

o
= y(t) + z2(t), (24)
where, :

y(t) = M x(0), (25)

t
ECEY MUY ) . (26)

By mon- 4( P Zoforantso, s that, from (25), y(t) & O for al1
t20. Aso, Y 2 0 for ¢ > u; since b(u) 3 0 for all u, by assumption,

c““"‘" i(u), 20,08 yct, (27)
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and therefore z(t) = 0 from (26). Combining these statements we see that,

x(t) = 0, and P[x(t)) = Ply(t)) v P[z(t)] , all t>0. (28)
From Lemma 9, Ply(t)] = C(et) Px(0)], all t> 0.

From Theorem 3, C(ert) = k $(At) for t > 0; but since obviously C(At) = C(A)
for any matrix A and any scalar t # 0, it follows from the definition of K G(A).
D.19, that K S(At) = k ® (A) for a1l t>o0.

Pry(t)] = K & (A) PIx(0)] for t > 0. (29)
In particular, P[y(t)] is independent of t for t > 0. Hence, as far as the effects
of initial conditions go, any component that is going to be positive eventually
is positive immediately. However, as will be seen below, the delay effects of
the connectivity of the matrix affect the solution but in a different way.

If, for some component a,(eA(t'") b(u) )u =0 for all u, 0 5 u < t, then
obviously, from (26), (z(t))a = 0. On the other hand, if b is assumed continuous,
then if

(erit-u) b(u)), > O for some u, 0 fu<t ,
it is positive in some interval and hence from (27) and (26), (z(t))° >0. In
symbols,

Prz(t)) = U pref®Wopy - U C(e““‘"’) PIb(u))

0=uc<t 0 u<t
o ¥ kS (R) Pb(u)]
0= uc<t
=k (A) _U  Prblu)], for t>0. (30)
Suc<t
The steps are the same as those leading to (29), together with a final step which

uses (6).

The result can be made still more transparent with the aid of a nonzero index
for functions of a continuous variable.

D.23. &(b) (8) = inf (t | t 20, b, (t) ¢ O

If u <¢(b) (8), then b, (u) = 0, and therefore 8 ¢ P(b(u)]. Therefore, if
t = ¢(b)(8), 8 ¢ P(b(u)] for all u, 0 5 y < t, and therefore,

s "
if t 3¢ (b)(s), 8 ¢ . s(a)‘ . Pb(u))

Suppose now t > ¢ (b)(8). Then, by D.23, there exists u,
g(b) (8) 5 u < t, 8 eP[blu)],
and therefore,

P >
: Oﬁtllj<t A

Hence, U
; Pib(u)] 1f and only if
8¢ 0‘0 <t (b(u) : y A
035 z(b)(e) <t. (31)
For fixed b, z(b) is a function over a finite set. For any function. f,
! M-unmm m f(u)-m m.ymsumnmoff.f 1(s) means

adii ey
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- the set {x |f(x) ¢ S}. In this notation,

0= ¢(b)(8) <t if and only if Bc[c(b)]'] (<0,t)),
where <0,t) is the interval closed on the left and open on the right.
Then,

Vo) = ) (<o, t).

0= u<t
In combination with (30), (29), and (28), we can state,

Theorem 6.* Suppose A is a Metzler matrix, b continuous and non- negatrve,
x(t) = Ax(t) + b(t) for all t 2 0, and x(o) 0. Then, x(t) 20, al1 t 2 0, and,

Pix(t)) = K ® (A) (Px(0) o [e(b)] “'(<0,t) )] for t > 0.

Notice again that the signs of all the components are completely determined
by the sign patterns of the matrix of the initial conditions, A and of the forcing
function b. At any time t, we find all components which are either positive at
time 0 or have been nonzero at some time point before t; then take all components
linked to them directly or indirectly by chains of nonzero entries in the matrix
A. This set is precisely the set of positive components at time.

This theorem actually relates to more than thegenesis of the dynamic system.
The next result will study behavior at the starting-point, specifically, the
qualitative behavior of the successive time derivatives of the different components
of x(t) at the point t = 0.

First, the non-negativity of a function and the first-positivity of the
sequence of its derivatives are related.

Lensma 10. An infinitely differentiable vector function f is nori-negative for
t =0 if and only if, for each t2o, the sequence ) f(")(t) is first-positive.

Proof: Suppose f(t) 0, all t 2 0, but for some t Z 0, the sequence
Ay f(")(t ) is not first-positive. Then there exist 8 and n so that,

f"" (tg) = 0 for r <n, £™ () <0. But ifn=o, then £, (t;) <0,
contrlry to hypothesis. ifn> o. then f (t) < 0 in some right-hnnd neighborhood
of to’ again contrary to hypothesis.

Conversely, suppose A, f(")(t) is first-positive for all t. Then in
particular, it is impossible that fg (t) < 0 for any t and 6, for then £{°)(¢) < 0,
in which case the sequence A_ f(")(t) would not be first-positive.

Differentiate the systeu of differential equations (23) n times, and then
set t = 0.

™1 (0) = ax(M)(g) + p{"M(0). (32)
By Lemna 10, the sequence A, b{")(0) 15 first-positive; the matrix A is Metzler
by assumption; and x(o (0) = x(0) = 0, by assumption. Hence, (32) constitutes a
system of difference equations which satisfies all the hypotheses of Theorem 5.

Theorem 7. Under the hypotheses of Theorem 6, the sequence ) x("’(o) is
first positive, and

"ﬁ'mf‘mr‘ 0 already appeared in (1), Theorem *, p. 14,
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via, x™(0) )
= min { min s (A)(a,B), 1 + min §[(A)(as8) + v(a b(")(o)]}
8 ¢ Px(0)] 8 ¢ P[x(0)) "

Thus, a positive initial component causes every component indirectly
connected to it to become positive in the right-hand neighborhood of the origin,
but the order of growth (linear, quadratic, or whatever) depends on the length
of the connecting chain through the matrix. Similarly, a forcing term will cause
an order of growth in a component of x which is greater by 1 than the sum of the
order of growth of the forcing term at zero and the length of the shortest chain
to the x-component. These remarks are only valid for the first effect on the
given component.

To illustrate, for an x-component which is initially zero, the growth is
linear if either there is a chain of length 1 to a positive x-component or the
forcing term for the given component is positive. The growth is quadratic if
neither of these conditions hold and if one of the following three conditions is
valid: (1) there is a chain of length 2 to a positive initial component; (2)
there is a chain of length 1 to a component whose forcing term is increasing

Tinearly from zero; (3) the forcing term for the given component is increasing
quadratically.
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